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Introduction 
  

Transcriptional regulation, chromatin states, and genome stability pathways are 

largely governed by interactions between DNA and proteins (Schmidt et al., 2009, Park et 

al., 2009). To understand these biological processes on a global scale, it is important to 

map specific protein-DNA interactions throughout the genome.   For example, the global 

mapping of protein-DNA interactions and histone mark modifications has lead to the 

discovery that monomethylation of specific lysine residues on histone tails are linked to 

gene activation while certain combinatorial trimethylations of histone tails are linked to 

gene repression (Barski et al., 2007; Gordon Roberston et al., 2008). This genome-wide 

protein-DNA interaction data is gathered through the technique of chromatin 

immunoprecipitation (ChIP) followed by deep sequencing. This method, known as ChIP-

seq, relies on immunoprecipitating (IP-ing) a fragment of DNA bound by a protein of 

interest followed by sequencing of the isolated DNA to determine sites of enrichment 

throughout the genome (Johnson et al, 2007; Barski et al, 2007; Robertson et al, 2007). 

Importantly, the data generated by ChIP-seq depends heavily on the computational tools 

applied to the sequencing analysis. In this review, I will discuss the methodology and 

data output of ChIP-seq and then focus on describing and critiquing a variety of different 

programs, known as peak calling algoirhtms, which exist to determine enriched regions 

of the genome. It is important to appreciate the different programs available for ChIP-seq 

enrichment analysis, and the strengths and weaknesses of each approach.  

 
Methodology 

The ChIP-seq technique relies on being able to detect in vivo protein-DNA 

interactions. To achieve this, researchers rely on covalently cross-linking DNA and 

protein, commonly with formaldehyde, in vivo in order to capture protein dynamics 

(Solomon et al., 1988). Cells are then lysed and the chromatin is sonicated into small 

(200-600 base pair) fragments. Researchers must take care to sonicate properly, as too 

large of fragments will not IP efficiently and create higher background, while fragments 



that are too small can disrupt the protein-DNA interaction. At this point, a fraction of the 

sonciated chromatin is taken as the input sample while the remainder is used for 

immunoprecipitation (IP). An antibody to a protein of interest is then incubated with the 

sonicated chromatin. An antibody that is high quality and specific is essential, and it is 

important to note that cross-linking can mask some target epitopes. Beads are then 

coupled to the antibody and the antibody is used to pull down both the protein of interest 

and the corresponding DNA fragment to which the cross-linked protein is bound.  

Following this pull down, it is important to reverse the cross-links by heating the sample 

at 65o C overnight and to treat with RNase A and proteinase K such that only the IPed 

DNA remains. This DNA along with the input DNA is then purified and prepared for 

sequencing (Figure 1).  

The methodology of the library preparation for sequencing varies based on the 

next generation sequencing (NGS) platform used; described here is the sample 

preparation for sequencing on an Illuminia Genome Analyzer (Schmidt et al., 2009; 

Illuminia, 2007). First, the T4 DNA polymerase, Klenow polymerase, and T4 

polynucleotide kinase are used for end repair, converting the DNA overhangs into 

phosphorylated blunt ends.  To prepare the samples for adaptor ligation, an A base is 

added to the newly generated 3’ blunt phosphorylated end. This A pairs with the single T 

overhang on the sequencing adaptor. After the adaptors have been ligated to DNA ends, 

the library is size selected for the desired template size via gel extraction. These adaptor-

containing fragments can then be amplified by PCR. Because this step can create bias as 

some fragments amplify more efficiently then others, the use of controls is vital. The 

PCR-amplified library can then be run through a flow cell sequencer.  

 Proper ChIP controls are important for determining accuracy of the experimental 

technique, and the computational analysis. For example, it is vital to control for non-

uniform sonication that occurs across different regions of the genome due to changes in 

chromatin state and repetitive sequences (Park, 2009). It is also recommended to control 

for nonspecific antibody binding, and bias in the amplification of different fragments in 

library construction (Park, 2009; Bardet et al., 2012). In a simple two-sample experiment, 

moreover, a negative control is strongly recommended to build a model of background 

noise (Ji, 2010). Common controls, which are described below and each test for slightly 



different artifacts, include an input sample, a mock sample, or a nonspecific antibody 

sample.  

Any enrichment in a ChIP-seq profile should be determined relative to the input 

sample in the same genomic region. By comparing enrichments of read counts between a 

ChIP sample and its input sample, it minimizes bias in sonication and in the PCR 

amplification and consequent sequencing steps (Park, 2009). The steps for normalization 

to the input are briefly described in this review, in the data output and analysis section. A 

mock sample, where no antibody is used for the IP, is a control that can minimize 

background of the IP and sonication efficiency. It is not commonly utilized, however, 

because the amount of DNA pulled down in the mock is limited and often insufficient for 

library generation and sequencing (Kharchenko et al., 2008; Bardet et al, 2012). Another 

control is the non-specific antibody (such as immunoglobulin G or GFP), whose target 

does not interact with chromatin. The non-specific antibody control is similar to the mock 

control in artifact detection, but also suffers from the same limitations. Thus, given the 

range of artifacts input controls for as well as the large amount of DNA the input yields, 

input is considered to be the most reliable and commonly-used control (Park et al., 2009; 

Schmidt et al., 2009). 

Data Output and Analysis 
  
 There are a variety of NGS platforms available that provide high resolution, in-

depth coverage for ChIP-seq analysis. Roche454, Life SOLID3, Illumina GAII, Helicos 

Heliscope, and Pacific Biosystems RS system are common platforms that rely on 

pyrosequencing, sequencing by ligation, and sequencing by synthesis (Illuminia, Helicos, 

and Pac Bio) respectively (Zhou et al., 2010).  The basic work scheme for data generated 

from a sequencing platform for ChIP-seq is shown (Figure 2).  The first step of analysis 

is genome alignment, which is another aspect of ChIP-seq processing that requires a great 

deal of computational work. Because it is not the focus of this review, a brief description 

is provided. The generated NGS data must first go through platform-dependent image 

analysis, also known as base calling, where each nucleotide base is identified. For 

example, the Illumina base-calling program depends on assigning the nucleotide 

sequences from the fluorescence trace that is created when each fluorescently-labeled 

nucleotide is incorporated into the complementary strand during sequencing (Ledergerber 



and Dessimaz, 2011). These stretches of 30 – 50 base pair sequences assigned through 

base-calling are known as sequence tags.  

 Once the sequence tags are generated, they must be aligned back to a reference 

genome. This alignment is challenging, as many short reads need to be mapped back to a 

large reference data set while minimizing sequence errors but allowing for genomic 

variation (Fonseca et al., 2012). Many mapping programs exist, and most rely on the 

following principle, as described in Fonseca et al., 2012. “ Given a set of sequences Q 

(produced by a HTS [high throughput sequencing] technology), a set of reference 

sequences R, a possible set of constraints, and a distance threshold k, find all substrings m 

of R that respect the constraints and that are within a distance k to a sequence q in Q, i.e., 

d(q,m) ≤ k, where d() is some distance function. The occurrences m in R are called 

matches. The constraints imposed can vary depending upon the HTS application and data 

type (e.g., whether the data generated are single reads (most common for ChIP-seq, or 

pair-end reads).” Genome matching software works to find the sequence q among all the 

reference data.   

Some mapping algorithms also take into account platform-specific biases. For 

example, Illuminia sequencing is less accurate as read cycle number increases, making 

the 3’ end of each read less reliable. It has been shown that mismatches toward the 3’ end 

of tags make up 41-75% of total mismatches (Kharchenko et al., 2008). Therefore, 

algorithms such as Bowtie remove several of the 3’ ends from the read (Fonseca et al., 

2012). Moreover, many algorithms utilize the base quality score that is produced by the 

sequencer during base-call analysis to generate a more accurate alignment. Use of the 

quality score can lower the frequency of alignment errors by assigning bases that have 

low scores a decreased penalty of mismatch (Li and Homer, 2010; Fonseca et al., 2012). 

Importantly, only reads that map to single unique location are used (Taslim et al., 2012). 

A list of the available mapping algorithms, along with read length limits, how the tags are 

aligned (end-to-end or locally), and whether gaps such as insertions and deletions are 

allowed in the alignment is shown in Figure 3.  The choice of mapping algorithm to use 

for ChIP-seq alignment thus depends on the sequencing platform used and downstream 

analysis tools.  



One challenge to generating reliable ChIP-seq data is obtaining the appropriate 

sequencing depth. Because ChIP-seq reads map to only a subset of the genome, many 

publications require 100x coverage. Moreover, depending on the type of protein being 

examined in ChIP and the number of corresponding binding sites in the genome, a large 

number of tags may be necessary to cover each binding site at the same density (Park, 

2009). For example, many more reads would be needed for proper ChIP-seq analysis of a 

histone modification that spans a large portion of the genome than of a transcription 

factor that binds only several discrete sites along the genome. The best way to determine 

if sequencing depth is sufficient is to find a ‘saturation point;’ beyond this point 

additional reads should not result in any additional enrichment or change in binding sites 

(Park, 2009).  

Genome Density Analysis and Normalization  

After tags have been aligned to the reference genome, the data needs to be 

transformed into count-per-position data, also known as genomic densities. To generate 

genomic densities, nearby reads are grouped together. A sliding window algorithm, 

which is commonly applied, calculates the number of tags found in a fixed window 

across the entire genome (Wilbanks and Facciotti, 2010). Another option is to “[extend] 

the alignments beyond the tag length and [record] a tag count at each position N bases 

downstream of the alignment start”, where N is equal to the average insert size (Leleu et 

al., 2010). This method creates a smoothed density, resulting in largely contiguous 

regions. The caveat to this approach is that it estimates fragment size and assumes 

fragments are uniform (Park, 2009). Genomic density data is important for control 

analysis as contiguous regions generate a more uniform normalization of the ChIP data 

(Leleu et al., 2010).   

Normalization to the ChIP control sample is essential to extract information about 

binding enrichment of a protein of interest.  The data generated from a control and the 

ChIP data itself is very similar (Auerbach, et al., 2009) and there is often a similar bias in 

the distribution of sequence reads both in the input and ChIP sample.  Therefore, it is 

important to quantitatively compare the two samples using a linear regression of the 

genomic densities and “scale them globally by the slope of the regression” (Leleu et al., 

2010). Nonlinear normalization is important for comparing several ChIP samples, such as 



before and after a specific treatment where only a subset of genes will be affected. In this 

analysis, the data should also be normalized with respect to the mean and then with 

respect to the variance (Taslim et al., 2012). Because there are a variety of ways to 

normalize the data, depending on the type and number of ChIP samples being compared, 

it is essential to consider the experimental design as well as the desired output prior to 

normalization.   

Peak calling program analysis 

The next step after the ChIP reads have been aligned to the genome and 

normalized with respect to a control sample is to look for enriched regions known as 

ChIP peaks. These peaks ultimately allow the researcher to localize the binding site of 

their protein of interest. Peak calling depends on the analysis of tag density profiles. As 

described by Pepke et al. (2009) and Leleu et al. (2010), these profiles are typically 

classified into three major categories: punctate/sharp patterns like those of transcription 

factors, localized but broad profiles like those created by active histone marks, and 

extended broad regions like those of an inactive histone mark that is found widely 

throughout the genome. These three major types of peaks present a major challenge for 

ChIP-seq analysis, as the majority of software is designed to assign only sharp peaks 

(Pepke et al., 2009).  

As of 2010, there were 31 different algorithms available for determining ChIP-seq 

peaks (Wilbanks and Facciotti, 2010). The basic steps of a peak calling software are 

outlined here (and shown in Figure 4).  The first step of many peak calling software 

includes determining genomic enrichment (already briefly described in the Genome 

Density Analysis and Normalization section of this review). The program often then 

provides 1) a signal profile along each chromosome, 2) a background model, 3) peak call 

criteria, 4) a post-call filtering of artifact peaks, and 5) the associated significance of the 

called peaks (Pepke et al., 2009). While not all programs take into account the above 

criteria, the majority of programs rely on similar principles. The peak calling algorithms 

that this review focuses on are: CisGenome, MACS, PeakSeq, and SISSRs. These 

programs were selected for analysis because they are commonly used and comparative 

analysis of these programs has been published (Wilbanks and Facciotti, 2010). 

 



CisGenome Program 

 The CisGenome algorithm builds a signal profile by moving a sliding window of 

a fixed width across the genome and summing the tag counts in each window with a 

summed value in the center of the window (Pepke et al., 2009; Ji et al., 2008). Filtering is 

done to prevent duplicate tag reads. In a one-sample analysis, CisGenome identifies 

regions that have tag counts greater than a user-chosen cutoff point. The false discovery 

rate is then estimated by predicting the read count in “nonbinding windows using a 

negative binomial distribution.” (Ji et al., 2008). The use of the negative binomial 

distribution is different than the Poisson distribution used by MACS, for example, in that 

it allows the rate of background reads to vary across the genome (Ji et al., 2008). 

 The CisGenome algorithm differs slightly for a two-model system (such as a ChIP 

sample and a control sample). In this case, it uses a conditional binomial model to call 

regions that are significantly enriched in the ChIP sample relative to the control. 

Windows of fixed width are again used to identify predicted binding regions via a user-

specific false discovery rate (Ji et al., 2008). P-values are provided for enriched peaks. 

Interestingly, tag shifting (required in MACS and SiSSRs prior to processing) is used 

only to refine the analysis such that the modes of 5’ and 3’ tag peaks are then used to 

define the binding boundaries (Ji et al, 2008). Because tag shifting is thought to make 

identifying the precise binding site more accurate, some consider this a weakness of the 

CisGenome program (Wilbanks and Facciotti, 2010). One of the strengths of the 

CisGenome algorithm is that it is integrated with a user-friendly browser for visualizing 

mapped data and peaks (Figure 5). 

MACS Program 

 MACS (model-based analysis of ChIP-seq) is a common peak calling algorithm 

which analyzes short read sequences and models the shift size of the ChIP-seq tags to 

improve resolution of predicted binding sites (Figure 6) (Zhang et al., 2008). First, 

MACS scales the total control tag count to be identical to the tag count from the ChIP 

experiment and removes all redundancies in sequencing tags so that each location in the 

genome contains no more than one tag in order to reduce error (Zhang et al., 2008). The 

algorithm then specifically uses sliding windows across the genome equal to 2 x a given 

sonication size to search for regions with tags that are considered enriched relative to 



random tag distribution patterns. Importantly, the algorithm samples 1,000 of these 

regions of enrichment and “aligns them by the midpoint between their Watson and Crick 

tag centers” (Zhang et al., 2008). MACS shifts all the tags by d/2, where d is the distance 

between the mode of the Watson and Crick peaks. 

 After this tag shift has occurred, a sliding window is used to identify peaks with 

enriched tags based on a Poisson distribution. The MACS model using the Poisson 

distribution is a better measure of enrichment than simply examining the fold ratio of the 

ChIP signal relative to the control because it can take into account the statistical 

significance of the number of samples being described (Park, 2009).  As Park (2009) 

described, determining fold enrichment from a tag ratio does not take into account 

whether 50 ChIP tags and 10 control tags or 500 tags ChIP tags and 100 control tags were 

being compared, despite the fact this affects the statistical significance. Moreover, the 

MACS algorithm can model background tag distribution based on either a random 

distribution model or through use of a control dataset and can account for regional biases 

in tag density (Zhang et al., 2008; Wilbanks and Facciotti, 2010). The precise protein 

binding location, also known as the summit, is then identified as the location that has the 

most fragment overlap. Candidate peaks with a p-value threshold below a set user defined 

threshold (often 10 -5) are called (Zhang et al., 2008) and fold enrichment is provided.  

PeakSeq Program 

The PeakSeq algorithm relies on extended tag aggregation to form a fragment 

density map. Specifically, reads on either strand are extended toward the 3’ in order to 

have the average DNA fragment length (Rozowsky et al., 2008). Peaks are determined 

through two rounds of analysis (Figure 7). Peaks are initially called by comparing the 

extended tag aggregation to a simulation for each segment of the genome. A threshold is 

then determined that meets the user-set false discovery rate, and this threshold is used to 

find potential target sites (Rozowsky et al., 2008).  PeakSeq, unlike MACS, CisGenome, 

and SiSSRs, applies a level of post-filtering where regions are subdivided into more than 

one summit call (Pepke et al., 2009). While this is intended to generate more precise 

genome binding information, no conclusive analysis on this type of filtering has been 

published. Interestingly, PeakSeq differs from CisGenome, MACS, and SISSRs in that 

PeakSeq also does not filter out duplicate reads that map to the same region of the 



genome (Wilbanks and Facciotti, 2010). While the lack of filtering can create bias in the 

analysis, other software packages can be used to filter the data.  

The peaks are then normalized to the control sample through an algorithm that 

selects the fraction of peaks to exclude and sums the tag counts in both the ChIP and 

control sample. A linear regression model is used to determine the scaling factor, which 

is used for normalizing the number of mapped fragments in the ChIP and control sample 

(Rozowsky et al., 2008). As a second round of analysis, the fold enrichment of the peaks 

is then calculated by determining the number of tags relative to the input. Q-values for 

the called peaks are calculated using a binomial distribution (Pepke et al., 2009).  

SISSRs Program 

 The SISSRs (Site Identification from Short Sequence Reads) package relies on 

the density and direction of reads along with the DNA fragment length to determine 

peaks. Peak criteria are determined by a window scanning method (Jothi et al., 2008). 

The window size is w nucleotides, and consecutive windows overlapping by w/2 are 

used, similar to the CisGenome algorithm. This model, like the MACS model, mandates 

a shift size of the ChIP-seq tags to improve resolution of predicted binding sites. The net 

tag count is for SISSRs is calculated in a given window by subtracting the number of tags 

mapped to the antisense strand from the number of tags mapped to the sense strand 

(Figure 8) (Narlikar and Jothi, 2012). When the net-tag count moves from a positive to a 

negative value, this region is considered a candidate-binding site. The program then 

determines if the candidate binding site meets a variety of other criteria, which are well-

described in Jothi et al. (2008).  

 SISSRs provides a model to account for background; control data is 

recommended to be substituted for the default model. The fold enrichment is the 

calculated by determining the ratio of the ChIP tag number in a given genomic loci to the 

tag number in the same location of the control data (normalized by total number of tags in 

each data set) (Jothi et al., 2008).  Like many of the algorithms, only peaks with p-values 

less than the user-set p-value threshold are called as true binding sites. It is interesting to 

note that because SISSRs relies on strand-specific tag densities where the space between 

peaks depends on the fragment length (and fixed width peaks are used), SISSR is 



considered best for looking at only punctate/sharp binding patterns like transcription 

factor binding (Wilbanks and Facciotti, 2010). 

 

Comparing Peak Calling Program Performance 

 While CisGenome, MACS, PeakSeq, and SISSRs each function to find regions of 

enrichment in ChIP-seq data, the profile, peak criteria, normalization, and filtering 

options differ. In order to compare the performance of these algorithms to one another, 

Wilbanks and Facciotti (2010) evaluated three different transcription factor (NRSF, 

GABP, and FoxA1) ChIP-seq and control datasets using different peak finding 

algorithms, including CisGenome, MACS, PeakSeq, and SISSRs. Because all three 

transcription factors used in the study have characterized binding motifs, these factors 

could be used to monitor peak quality and confidence. The first characteristic, sensitivity, 

was assayed by determining how many peaks each algorithm identified. MACS, SISSRs, 

and PeakSeq all identified a relatively large number of peaks for each dataset (Figure 9). 

For the GABP transcription factor, approximately 15,000 peaks were identified with 

MACS, SISSRS, and PeakSeq while only approximately 9,000 peaks were found with 

CisGenome. This likely reflects that CisGenome has more stringent default peak finding 

settings (Wilbanks and Facciotti, 2010).  

 In order to determine which peaks were shared between the different algorithms, 

the authors conducted a pair-wise comparison. The percentage of total peaks that is 

shared with another algorithm is represented is shown (Figure 10). For the NRSF 

transcription factor, it is interesting to see that a small peak list from CisGenome is 

almost completely contained (100%) within a much larger peak algorithm such as MACS 

(Wilbanks and Facciotti, 2010), while the CisGenome peaks make up only 19% of the 

total MACs peaks (Figure 10, Wilbanks and Facciotti, 2010). The CisGenome peaks 

make up 44% of the PeakSeq peaks and 31% of the SISSR peaks.  Even SISSRs and 

PeakSeq selected peaks made up only 45% (46% and 43% respectively) of the total 

MACS peaks.   Similar trends were observed for the other two datasets.  

 The authors then examined the sensitivity of each peak calling algorithm. 

Sensitivity is defined by an algorithms ability to call true peaks.  By examining 

quantitative PCR (qPCR) validated true positive binding sites, they found that 



CisGenome did miss several true-positive peaks (Figure 11). More surprisingly, however, 

was that SISSRs (which called nearly as many peaks as MACS) had an even lower 

sensitivity and missed multiple true-positive peaks. This suggests that the directionality 

scoring method relied on by SISSRS is less sensitive and perhaps more error prone.  

 Lastly, positional accuracy of peaks was compared. While CisGenome, PeakSeq, 

and MACS report peaks of variable width, SISSRs reported narrow fixed-width peaks. 

To analyze the accuracy of binding positions, the authors calculated the distance between 

each predicted binding coordinate and the center of binding motifs with a certain 

distance. The results were that MACS and SISSRs provided the best spatial resolution, 

likely because the peak search strategy the algorithms employ depends on identifying 

transition points of tag densities between the two strands (Wilbanks and Facciotti, 2010). 

Moreover, unlike many other peak calling algorithms, MACS has been shown to work 

well in calling both punctate/sharp peaks and broad signals associated with histone 

modifications (Feng et al., 2011). A summary of the approaches used by the four peak 

calling algorithms is shown (Figure 12). The choice of ChIP-seq peak calling algorithm 

should depend on a balance of sensitivity and precision, considering the experimental 

target and downstream analysis.  

The Future Challenges of ChIP-seq 

 ChIP-seq offers many advantages over previous technologies aimed at 

determining sites of genomic enrichment for a protein of interest. ChIP-seq offers better 

resolution, increased coverage, and fewer artifacts than ChIP-chip (ChIP followed by 

microarray).  Moreover, while the cost of ChIP-seq was once prohibitive (Park, 2009), 

the price of using NGS technology has continued to decrease (Davey et al., 2011). While 

there are technical concerns including sonication uniformity, PCR bias, and antibody 

specificity, one of the main challenges remains properly analyzing and validating results. 

Bench-top biologists may not be sufficiently trained in computational approaches to 

interrogate and apply the proper alignment and peak calling algorithms. While some 

algorithms, such as CisGenome, offer a user-friendly platform for viewing the data, there 

should be more focus on making programs accessible. Moreover, while a large number of 

peak calling algorithms exist, relatively few are designed for peaking up broad and mixed 



peaks associated with many epigenetic marks (Pepke et al., 2009; Wilbanks and Facciotti, 

2010).  

 Validating ChIP-seq findings and determining the biological significance is likely 

the most challenging aspect of ChIP-seq.  While all of the algorithms critiqued in this 

review assign peaks some statistical significance, ChIP-seq peaks can be validated with 

qPCR and, if they exist, true-positive binding sites can be confirmed. It is more difficult 

to determine if an identified binding site for a transcription factor has any functional 

relevance, for example. If a transcription factor requires co-factors for its activation, 

researchers should also ask by ChIP-seq if those co-factors are enriched at the identified 

binding sites. If a transcription factor is being analyzed, researchers could also confirm 

that mutating the identified binding site alters expression. These confirmations, however, 

are laborious and time intensive. It may become standard practice to integrate ChIP-seq 

results with other high throughput technologies such as RNA-seq to have a more global 

perspective (Park, 2009).  Thus, it is likely that ChIP-seq experiments and analysis will 

require generating and analyzing extremely large amounts of data. It is imperative that 

the computational resources and knowledge exist to best utilize this data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figures 
 

 
Figure 1. An overview of the ChIP-seq methodology. ChIP is performed on sonicated 
chromatin with an antibody to a protein of interest and relies on in vivo cross-linking of 
the protein to the DNA prior to IP. After the IP, the cross-links are reversed, the DNA is 
purified, and prepared for sequencing by generating a library. Many different platforms 
exist for sequencing, with the most common platforms being represented here. Figure 
from Park, 2009. 
 

 
Figure 2. A) An overview of the important computational steps in processing ChIP-seq 
data. B) Scheme of ChIP-seq measurements. Commonly, the 5’ ends (shown in red and 
blue squares) are sequenced. This creates groups of positive and negative strand tags. C) 
Illustration of potential tag distribution around a potential binding site. D) Strand cross 
correlation. The peak represents the distance separating seperating positive and negative 
strand peaks associated with a binding site. Figure and adapted legend from Kharchenko 
et al., 2008.  



 

  
 
Figure 3. A table of available mapper programs for mapping reads to the genome 
following sequencing. Figure from Fonseca et al., 2012. 
 



 
Figure 4. The important steps in peak calling of ChIP-seq analysis. A profile of aligned 
reads is formed. This could occur by summing the number of reads that overlap each base 
pair in the genome. The same analysis would then be applied to the control ChIP-seq 
data, if available. If no control data is available, a random genomic background is often 
used. Peaks are then filtered and scored with statistical significance. Figure from Pepke et 
al., 2009. 



 
Figure 5. The overview of the workflow for the CisGenome algorithm.  “CisGenome 
contains three core components: a GUI, the built-in CisGenome browser, and of 
underlying data analysis algorithms. The GUI allows users to load raw data and choose 
specific analysis functions. Core programs carry out the analysis and results displayed in 
the CisGenome browser can be exported in various formats.” Legend and Figure from Ji 
et al., 2008. 

 
 
Figure 6. MACS Algorithm workflow overview. Figure from Feng et al., 2012.  



 

 
Figure 7. Peak-seq scoring procedure. 1) “Mapped reads are extended to have the average 
DNA fragment length and then accumulated to form a fragment density signal map.” 2) 
“Potential binding sites are determined in the first pass of the PeakSeq scoring 
procedure.” 3) “After selecting the fraction of potential target sites that should be 
excluded from the normalization, the scaling factor Pf is determined by linear regression 
of the ChIP-seq sample against the input-DNA control in 10-KB bins.” 4) “Enrichment 
and significance are computed for putative binding regions.” Abbreviated legend and 
figure from Rozowsky et al., 2008. 
 
 



 
 
 
Figure 8. SISSRs algorithm overview.  “A) Sequenced short reads (typically 25-50 bp) 
from ChIP-seq experiments are first mapped onto the reference genome. The mapped 
reads are then used to estimate statistical parameters, which include the estimation of the 
average length F of sequenced DNA fragments. B) The entire reference genome along 
with mapped reads is scanned using overlapping windows of size w base pairs…and the 
net tag count (ci) for every window i is calculated. Every transition point (t) is a 
candidate binding site.” Abbreviated legend and figure from Jothi et al., 2008. 
 
 



 
 
Figure 9.  Number of peaks reported from each of eleven different peak calling 
algorithms run on their default settings. Number of peaks for three different ChIP seq 
datasets from transcription factors GABP, FoxA1, and NRSF are shown. Figure from 
Wilbanks and Facciotti, 2010.  

 
Figure 10. Pair-wise comparison of the number of peaks found in each peak calling 
algorithm (from Figure 9). The pair-wise comparison shown here is for the NRSF 
transcription factor. “Each panel shows the percentage of total peaks from one method 
(column) that is sharted with another method (row).” Portion of legend and figure from 
Wilbanks and Facciotti, 2010.  
 
 



 
 
Figure 11. Sensitivities of different peak calling algorithms. “The percentage of qPCR 
verified positives that were detected by different programs is shown as a function of the 
increasing number of ranked peaks” examined for the different transcription factor 
datasets.  Legend and figure from Wilbanks and Facciotti, 2010.  
 
 



 
Figure 12. Comparison of CisGenome, MACS, SISSRs, and PeakSeq peak calling 
algorithms, based on their profile, peak criteria, use of tag shift, control data and 
significance. Figure modified from Pepke et al., 2009. 
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